

About Northrop Grumman Health Solutions

Practice Areas

Informing Clinical Practice Interconnecting Clinicians Personalizing Care Improving Population Health

- 11 MDs, 15 total clinicians
- EHR services for 16 .5M DoD / VA patients
- HIT exchange for 172 VA medical centers

Clinical Information **Systems**

Healthcare **Systems** Management **Modernizing Benefit** Management **Promoting Quality Performance Supporting Information Flow**

- 1,000+ IT / informatics professionals
- Second largest IT contractor to HHS

Epidemiology & Biostatics Emergency Preparedness & Response **Occupational & Environmental** Health

140+ Public Health professionals

Communications & Education

Largest IT contractor to CDC

Public Health

Life Sciences

Managing Trials Information Improving Post-Market Surveillance **Enabling Bioinformatics** Solutions

- Largest bioinformatics contractor to NIH
- Over 1200 Pharma industry customers

Practice Snapshot

Designed and developed the largest global, enterprise-wide electronic health record (EHR) in the world.

AHLTA for DoD

- >9M beneficiaries
- >7K physicians
- 81 facilities

Pioneered the only operational nationwide health information exchange in the US.

FHIE/BHIE for VA

- 170+ facilities
- >19M personnel

Support development and operation of the only national public health information exchange in the world.

Contractor for the only civilian health

PHIN for CDC

- prevention
- detection
- response

NHIN for HHS

e-health records for all Americans

Designed and developed a unique medical terminology / ontology translation service.

TSB for DoD

semantic interoperability

AHLTA (formerly CHCS-II)

Clinical Information System maintaining a comprehensive, lifelong, computer-based electronic health record for <u>over 9.4 million</u> Military Health System beneficiaries.

Facilitates Documentation of the Electronic Medical Record

- 81 active facilities
- 221 locations including satellite clinics worldwide
- over 8000 providers actively on system
- over 48,000 encounters per day, increasing by 1,000-2,000 every month

In any given week, AHLTA supports

- 2.1 million prescriptions
- 1.8 million outpatient encounters
- 400,000 dental procedures
- 19,500 inpatient admissions
- 2,000 births

Federal / Bi-directional Health Info. Exchange

Framework for exchange of patient-focused electronic health information among DoD an VA sites.

- Ensures compliance with HIPAA regulations and security requirements.
- Improves sharing of clinically relevant health information.
- Allows convergence of health information applications.
- Enables interoperable health records and data repositories.

Types of information exchanged.

- Medication History
- Allergies
- Lab Results and Pathology Reports
- Radiology Reports
- Discharge Summaries
- Deployment-related health surveys

170+ VA hospitals covering <u>19 million</u> current and former military personnel.



Public Health Informatics

Public Health Information Network (PHIN)

The PHIN is a standardized framework that enables <u>consistent exchange</u> of health, disease tracking, and response data between public health partners.

Architecture Standard: based on logical and physical data model, public health directory, etc.

Messaging Standards: based on HL7, XML, and Web services (SOAP).

Data and Content Standards: based on SNOMED, LOINC.

Terminology Services Bureau

Tools and services that enable semantic interoperability between entities.

A consistent model that addresses:

- the process of mapping terms/concepts,
 capturing their relationships with other terms/concepts, and
 extracting mappings for any client application using those terms/concepts.

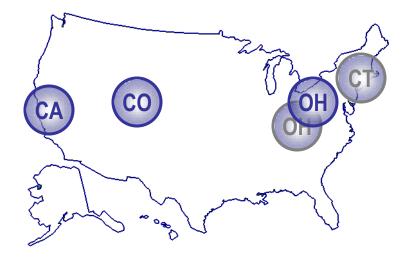
Leverage health informatics expertise with automation toolset to create relational maps of entity terms/concepts to canonical models.

Translation of entity terms/concepts to canonical model via run-time services.

Scalable: within enterprise, among enterprises, RHIOs, nationwide exchanges.

Current content in MHS Ontology: SNOMED CT. MEDCIN, PKC, RXNORM, NDC.

Nationwide Health Information Network


About Our NHIN Team

Our Health Care Partners

- Santa Cruz RHIO
- Greater Cleveland Metropolitan Area (UHHS, Cleveland Clinic, MetroHealth)
- Quality Health Network
- Greater Cincinnati HealthBridge
- Waterbury Health Access Program

Our Technology Team

First Consulting Group, Axolotl, RxHub, Client/Server Software Solutions, SphereCom Enterprises, Emdeon, Oracle, and Sun/SeeBeyond Technologies

Key Features of Our Health Care Partners

Varying Maturity

 Both well-established and forming health information communities.

Varying RHIO Technologies

 Both clinical-messaging and consolidator RHIO approaches.

Varying RHIO Architectures

 Both distributed (federated) models and centralized repositories.

Varying Types of Systems

Includes RHIOs, enterprise EHRs, and consumer-owned PHRs.

Drivers for Our Design

Design Goals

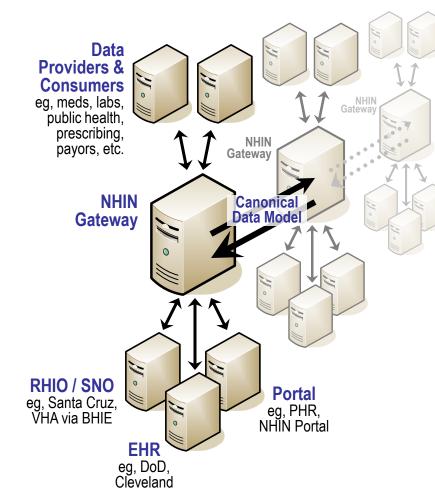
Sustains Interoperability

- 1. Develop / enforce <u>nationwide</u> <u>standards</u> to facilitate interoperability.
- 2. Leverage success at local level and "lower the barrier" for entry.

Facilitates Adoption

Design Drivers

- Broad interoperability through leveraging existing information exchanges.
- No dependence on centralized nationwide services.
- Quality attributes: performance, security, scalability, extensibility.
- Flexibility of implementation.

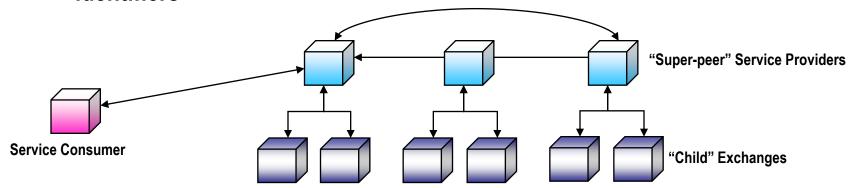

Our NHIN Architecture

Architectural Solution: Gateways

- Each entity connects through a gateway <u>providing essential services</u> needed for interoperability.
- Gateways interconnect using agreedupon <u>nationwide standards</u>.
- Gateways <u>provide translations</u> for children not yet standard-compliant.
- No centralized master service is needed.

Demonstrated at the 3rd NHIN Forum, January 2007.

Extended during February to include DoD and VA.

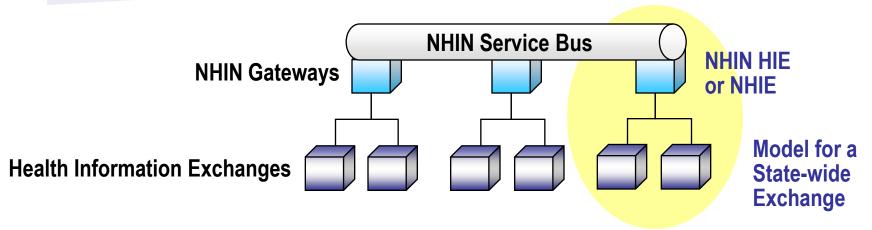

Super-peer Topology

Hierarchy stops below the master nationwide service.

Highest level of the hierarchy is composed of a number of "superpeers".

For patient ID example:

- Consumer queries a particular super-peer
- Super-peer can return identifiers within its children
- Super-peer will in turn query other super-peers in order to get other identifiers

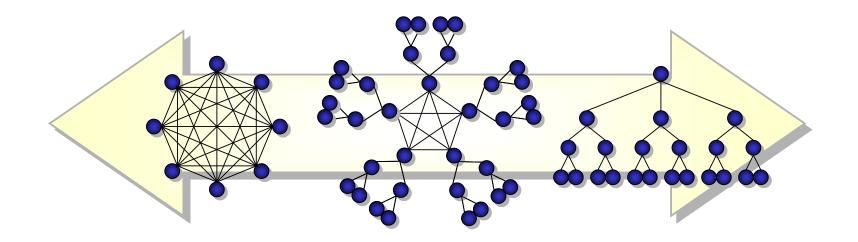


NHIN Service Bus

Features of an NHIN Service Bus (ESB):

- Distributed does not require a central hub or engine
- Standards-based
- Supports message routing, transformation
- Enforces business rules
- Enables service composition

NHIN services, acting as inter-connector for their children and as "on-ramp" to the NHIN, are aggregated into NHIN Gateways.

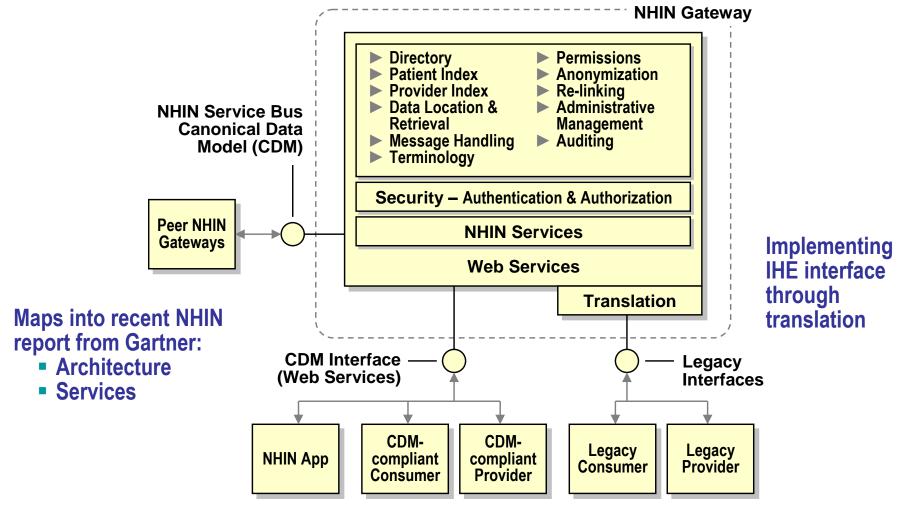

Why the Super-Peer Model?

Reduces complexity required of a peer-to-peer networks.

Peers need to manage all connections and know about all participants on the network

Allows for decentralization versus a hierarchical network.

- Allows any large HIE (NHIN HIE) to participate as a peer.
- Allows aggregation of a state, large community, or non-geographical exchange organization.

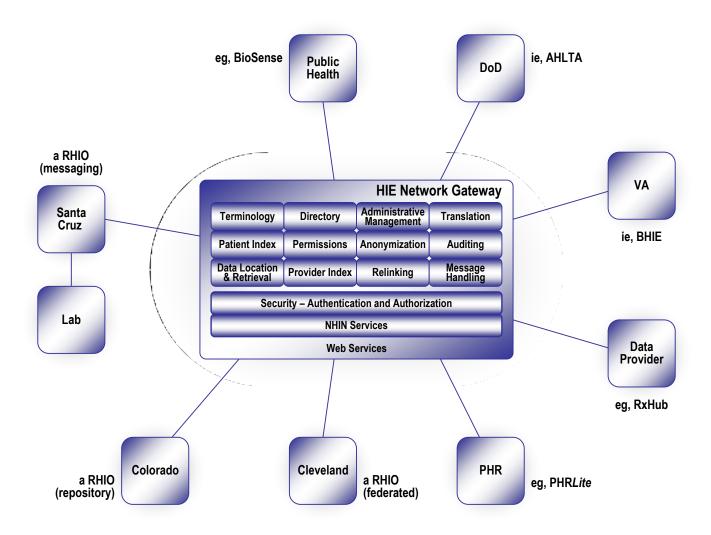


NHIN Gateway Architecture and Services

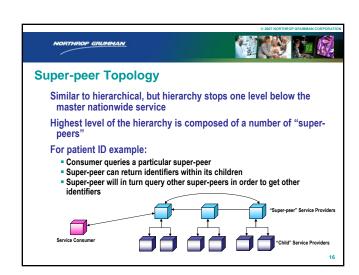
NHIN Architecture Framework

Architecture Overview

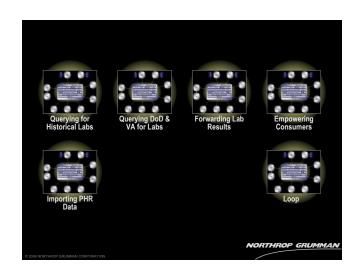
Features of Our Demonstration


- Physicians use their <u>clinical systems to access NHIN</u>, rather than NHIN portals.
- Consumers use a model PHR application to access NHIN services.
- Consumers <u>control exchange</u> of their health information using a Permissions Registry.
- NHIN <u>hides the complexity of the network</u> to simplify the user experience and thereby foster adoption.
- NHIN <u>translates information in flight</u> to facilitate connection and lower barriers for participation.
- NHIN provides added value by providing access to national data sources, such as RxHub, DoD and VA records, etc.
- NHIN provides added value by <u>automating reporting and routing</u> to other entities, such as the CDC.
- How NHIN can make <u>physicians more productive</u>, <u>consumers more engaged</u>, and <u>public health more informed</u>.

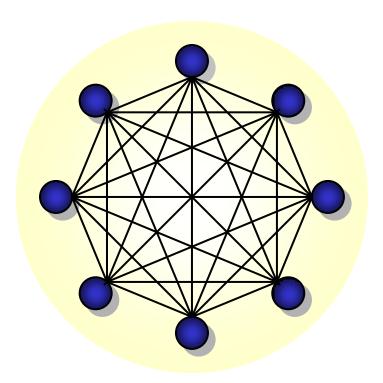
Demonstration Configuration



NHIN Forum Demonstration



Demonstration of NHIN Services



Compared to Connecting for Health

Does not require all participants to be fully NHIN-capable ...

- ... but degenerates to the Connecting-for-Health model if all HIEs are NHIN-capable; and
- ... enables HIEs to participate while their capabilities grow.

Compared to IHE-based Model

Does not enforce a document model or registry architecture for exchange that might conflict with privacy policies ...

- ... but supports IHE as an interface for those HIEs that expose it; and
- ... supports more flexible models for exchange that can accommodate policy.

Compared to Normalization

Does not require all participants to use the same format and terminology for information to participate ...

- ... but provides translation services for data in flight;
- ... incorporates efficiency of a Canonical Data Model, and
- ... allows HIEs to migrate to standards as they continue to develop.

But which one?

Summary

Flexible Model that allows HIE participation while adapting to policies and capabilities of each HIE.

Provides a simple, natural model for a **State-wide HIE** as a member of NHIN.

Designed to be <u>Easy to Use</u> for the physician by incorporating NHIN seamlessly into their current applications and workflow while hiding the complexity of the network.

Designed for Scalability using a hybrid architecture that is distributed and scalable.

Architecture and service model <u>Consistent with ONC</u> vision for NHIN as documented in Gartner Report.

Questions?

Contact Information

Robert M. Cothren, PhD Director, Clinical Information Systems Northrop Grumman Health Solutions

t: (703) 272-5964

e: Robert.Cothren@ngc.com